Estimation and measurement of backscattered signals from pulsed laser radar

نویسندگان

  • Boris Jutzi
  • Bernd Eberle
  • Uwe Stilla
چکیده

Current pulsed laser radar systems for ranging purposes are based on time-of-flight techniques. Nowadays first pulse as well as last pulse exploitation is used for different application, e.g. urban planning, forestry surveying. Besides this technique of time measurement the complete signal form over the time might be of interest, because it includes the backscattering characteristic of the illuminated field. This characteristic can be used for estimating the aspect angle of a plane with special surface property or estimating the surface property of a plane with a special aspect angle. In this paper a monostatic bi-directional experimental system with a fast digitizing receiver is described. The spatio-temporal beam propagation, the spatial reflectance of the surface, and receiver properties are modeled. A time dependent description of the received signal power is derived and our special surface property is considered. The transversal spatial distribution of the used laser beam was measured and displayed by the beam profile. For a plane surface under various aspect angles the transversal spatial distributions of the beam were simulated and measured. For these angles the corresponding temporal beam distributions were measured and compared with their pulse widths. The pulse spread is used to estimate the aspect angle of the illuminated object. The statistics for different angles was calculated. Different approaches which detect a characteristic time value were compared and evaluated. The consideration of the signal form allows a more precise determination of the time-of-flight. A 3-d visualization of equi-irradiance surfaces allows to assess the spatio-temporal shape of the pulses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Detection of Backscattered Signals from Breast Cancer Tumors: Hypothesis Testing Using an Adaptive Entropy-Based Decision Function

Introduction In recent years methods based on radio frequency waves have been used for detecting breast cancer. Using theses waves leads to better results in early detection of breast cancer comparing with conventional mammography which has been used during several years. Materials and Methods In this paper, a new method is introduced for detection of backscattered signals which are received by...

متن کامل

Size Distribution Measurement of Candle\'s Soot Nanoparticles by Using Time Resolved Laser Induced Incandescence

Time resolved laser induced incandescence (LII) technique is used to measure size distribution of soot nanoparticles of candle's flame. Pulsed Nd:YAG laser is used to heat nanoparticles to incandescence temperature and the resulting signal is measured. Mass and energy balance equations are numerically solved to calculate temperature of soot particles in low fluence regime. Assuming Plank black ...

متن کامل

Unified Pulsed Laser Range Finder and Velocimeter using Ultra-Fast Time-To-Digital Converter

In this paper, we present a high accuracy laser range finder and velocimeter using ultra-fast time-to-digital converter (TDC). The system operation is based on the measuring the round-trip time of a narrow laser pulse. A low-dark current high-speed PIN photodiode is used to detect the triggered laser beam and to produce start signal. The pulsed laser diode generates 45W optical power at 30ns du...

متن کامل

TWO PHOTON TRANSITIONS IN THE OPTOGALVANIC SPECTRUM OF NEON

Seventeen two-photon transitions for neon have been observed in the 580- 635 nm spectral region for use in the spectroscopic study of its higher excited levels, which are not accessible by one-photon absorption. To compare the two and one-photon absorption signals originating from the same lower level, an effort was made to record single-photon optogalvanic spectrum in the available wavele...

متن کامل

Design and Application of a Photoacoustic Sensor for Monitoring the Laser Generated Stress Waves in Optical Fiber

Measurement of stress transients generated by a 400ns pulsed HF laser in an infrared fluoride glass fiber has been made using fast time – response piezoelectric film transducer. Acoustic signals up to 12 mV with frequencies ranging in megahertz generated by 21 mJ laser pulse when passed through the fiber axis in the linear region. It is shown that useful information such as onset of non - linea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002